#### 4-2 Convolution Neural Network I

Zhonglei Wang WISE and SOE, XMU, 2025

#### Contents

1. Introduction

2. Basic structure

3. Forward propagation

4. Backpropagation

5. Understanding convolution networks

#### Introduction

- 1. Given an image, why not use a fully connected neural network?
  - Number of parameters is overwhelmingly large, easily leading to overfitting
  - Overlooks the spatial structure
  - Not location (translation) invariant
- 2. Consider a new network, convolution neural network (CNN), for image processing



Wang, Z. (WISE & SOE, XMU)

### Summary

- 1. Generally,  $d_C^{[l]}$  increases as l increases, but  $d_W^{[l]}$  and  $d_H^{[l]}$  decrease
- 2. The vectorization step does not involve any model parameter
- 3. Typically, there are three "layers" for CNN
  - Convolution layers (CONV)
  - Pooling layers (POOL)
  - Fully connected layers (FC)

#### Notation

- 1. l: layer index
- 2.  $d_H^{[l]}$ : height of the "image" of the lth layer
- $3 \cdot d_W^{[l]}$ : width of the "image" of the lth layer
- 4.  $d_C^{[l]}$ : number of channels of the *l*th layer
- $5 \cdot f^{[l]}$ : kernel size associated with the lth layer
- 6.  $p^{[l]}$ : padding associated with the lth layer
- 7.  $s^{[l]}$ : stride associated with the lth layer

### Vectorization

- 1.  $\mathbf{A}^{[l-1]} \in \mathbb{R}^{n \times d_H^{[l-1]} \times d_W^{[l-1]} \times d_C^{[l-1]}}$ : input for the lth layer
- 2.  $\mathbf{Z}^{[l]} \in \mathbb{R}^{n \times d_H^{[l]} \times d_W^{[l]} \times d_C^{[l]}}$ : linear transformed result

$$oldsymbol{Z}^{[l]} = oldsymbol{A}^{[l-1]} "*" oldsymbol{W}^{[l]} "+" oldsymbol{b}^{[l]} \ oldsymbol{A}^{[l]} = \sigma^{[l]} (oldsymbol{Z}^{[l]})$$

- $\mathbf{W}^{[l]} \in \mathbb{R}^{d_C^{[l]} \times f^{[l]} \times f^{[l]} \times d_C^{[l-1]}}$ : kernels
- $\boldsymbol{b}^{[l]} \in \mathbb{R}^{d_C^{[l]} \times 1 \times 1 \times 1}$ : bias term
- "\*": convolution for each sample and each channel
- "+": one common bias for each channel
- $\sigma^{[l]}(\cdot)$ : activation function for the lth layer

#### Vectorization

- 1. For simplicity, we show forward- and back-propagation for n=1
  - $\boldsymbol{A}^{[l-1]} \in \mathbb{R}^{d_H^{[l-1]} \times d_W^{[l-1]} \times d_C^{[l-1]}}$
  - $\boldsymbol{Z}^{[l]} \in \mathbb{R}^{d_H^{[l]} \times d_W^{[l]} \times d_C^{[l]}}$
- 2. Forward propagation:

$$oldsymbol{Z}^{[l]} = oldsymbol{A}^{[l-1]} "*" oldsymbol{W}^{[l]} "+" oldsymbol{b}^{[l]} \ oldsymbol{A}^{[l]} = \sigma^{[l]} (oldsymbol{Z}^{[l]})$$

### Convolution

#### 1. Consider:

- $^{\bullet} p^{[l]} = 0$
- $s^{[l]} = 1$

### Convolution



$$oldsymbol{A}^{[l-1]} \in \mathbb{R}^{d_H^{[l-1]} imes d_W^{[l-1]} imes d_C^{[l-1]}}$$

$$oldsymbol{Z}_0^{[l]} = \mathbb{R}^{d_H^{[l]} imes d_W^{[l]} imes oldsymbol{d}_C^{[l]}}$$

$$oldsymbol{Z}^{[l]} \in \mathbb{R}^{d_H^{[l]} imes d_W^{[l]} imes oldsymbol{d_C^{[l]}}}$$

$$oldsymbol{W}^{[l]} \in \mathbb{R}^{oldsymbol{d_C^{[l]}} imes f^{[l]} imes f^{[l]} imes d_C^{[l-1]}}$$

$$m{b}^{[l]} \in \mathbb{R}^{m{d}^{[l]}_{C} imes 1 imes 1 imes 1}$$

$$oldsymbol{A}^{[l]} \in \mathbb{R}^{d_H^{[l]} imes d_W^{[l]} imes oldsymbol{d_C^{[l]}}}$$

# Pooling

- 1. Pooling is typically used after convolution layers,
  - Reduce height and width for each channel
  - Achieves robustness by neglecting useless or repeated information
  - Increase the receptive field
  - Achieve robustness small translations, rotations, and other distortions in the input
  - Prevent overfitting, especially when combined with dropout

# Pooling

- 1. Two types of pooling:
  - Average pooling
  - Max pooling
- 2. Notice
  - Pooling is conducted for each channel
  - Pooling does not involve new model parameters

# Average pooling

- 1. Input size:  $6 \times 6$
- 2. Kernel size:  $2 \times 2$
- 3. Stride: 2

# Average pooling

Input

| 3 | 6 | 5 | 4 | 8 | 9 |
|---|---|---|---|---|---|
| 1 | 7 | 9 | 6 | 8 | 0 |
| 5 | 0 | 9 | 6 | 2 | 0 |
| 5 | 2 | 6 | 3 | 7 | 0 |
| 9 | 0 | 3 | 2 | 3 | 1 |
| 3 | 1 | 3 | 7 | 1 | 7 |

Kernel

 0.25

 0.25

 0.25

Result

| 4.25 | 6.0  | 6.25 |
|------|------|------|
| 3.0  | 6.0  | 2.25 |
| 3.25 | 3.75 | 3.0  |

# Max pooling

- 1. Input size:  $6 \times 6$
- 2. Kernel size:  $2 \times 2$
- 3. Stride: 2

# Max pooling

Input

| 3 | 6 | 5 | 4 | 8 | 9 |
|---|---|---|---|---|---|
| 1 | 7 | 9 | 6 | 8 | 0 |
| 5 | 0 | 9 | 6 | 2 | 0 |
| 5 | 2 | 6 | 3 | 7 | 0 |
| 9 | 0 | 3 | 2 | 3 | 1 |
| 3 | 1 | 3 | 7 | 1 | 7 |

Kernel

Result

| 7 | 9 | 9 |
|---|---|---|
| 5 | 9 | 7 |
| 9 | 7 | 7 |

## Forward propagation



### Backpropagation



### Backpropagation

- 1. We have learnt backpropagation for fully connected layers
- 2. Thus, it remains to show the backpropagation for
  - The pooling layer (POOL)
  - The convolution layer (CONV)
- 3. In the following, we assume a POOL is conducted right after a CONV

### Backpropagation

#### 1. Denote

- $\mathbf{A}^{[l-1]} \in \mathbb{R}^{? \times ? \times d_C^{[l-1]}}$ : output of the (l-1)th CONV
- $\mathbf{Z}^{[l-1]} \in \mathbb{R}^{d_H^{[l-1]} \times d_W^{[l-1]} \times d_C^{[l-1]}}$ : output of the (l-1)th POOL, taking  $\mathbf{A}^{[l-1]}$  as input
- $\boldsymbol{W}^{[l]} \in \mathbb{R}^{d_C^{[l]} \times f^{[l]} \times f^{[l]} \times d_C^{[l-1]}}$ : kernel for the lth layer, taking  $\boldsymbol{Z}^{[l-1]}$  as input
- $\boldsymbol{b}^{[l]} \in \mathbb{R}^{d_C^{[l]} \times 1 \times 1 \times 1}$ : bias for the lth layer, taking  $\boldsymbol{Z}^{[l-1]}$  as input
- $\mathbf{A}^{[l]} \in \mathbb{R}^{? \times ? \times d_C^{[l]}}$ : output of the lth CONV
- $\boldsymbol{Z}^{[l]} \in \mathbb{R}^{d_H^{[l]} \times d_W^{[l]} \times d_C^{[l]}}$ : output of the lth POOL

#### Structure



1. Assume that  $d\mathbf{Z}^{[l]}$  is available

# Backpropagation for average POOL

 $oldsymbol{A}^{[l]}$ 

| 3 | 6 | 5 | 4 | 8 | 9 |
|---|---|---|---|---|---|
| 1 | 7 | 9 | 6 | 8 | 0 |
| 5 | 0 | 9 | 6 | 2 | 0 |
| 5 | 2 | 6 | 3 | 7 | 0 |
| 9 | 0 | 3 | 2 | 3 | 1 |
| 3 | 1 | 3 | 7 | 1 | 7 |

Kernel M

| 0.25 | 0.25 |
|------|------|
| 0.25 | 0.25 |

 $\boldsymbol{Z}^{[l]}$ 

| 4.25 | 6.0  | 6.25 |
|------|------|------|
| 3.0  | 6.0  | 2.25 |
| 3.25 | 3.75 | 3.0  |

# Backpropagation for average POOL

1. For average pooling, we have

$$\mathrm{d} oldsymbol{A}^{[l]} = \mathrm{d} oldsymbol{Z}^{[l]} \otimes oldsymbol{M}$$

•  $A \otimes B$ : Kronecker production of two matrices A and B

# Backpropagation for Max POOL

 $oldsymbol{A}^{[l]}$ 

| 3 | 6 | 5 | 4 | 8 | 9 |
|---|---|---|---|---|---|
| 1 | 7 | 9 | 6 | 8 | 0 |
| 5 | 0 | 9 | 6 | 2 | 0 |
| 5 | 2 | 6 | 3 | 7 | 0 |
| 9 | 0 | 3 | 2 | 3 | 1 |
| 3 | 1 | 3 | 7 | 1 | 7 |

Kernel



 $\boldsymbol{Z}^{[l]}$ 

| 7 | 9 | 9 |
|---|---|---|
| 5 | 9 | 7 |
| 9 | 7 | 7 |

## Backpropagation for Max POOL

- 1. For Max pooling,  $dA^{[l]}$  is obtained by
  - stacking small matrices associated with each elements in  $\mathbf{Z}^{[l]}$  times a  $2 \times 2$  mask matrix
  - Those  $2 \times 2$  matrices consist of 0s and only one 1
- 2. We have finished the backpropagation from  $d\mathbf{Z}^{[l]}$  to  $d\mathbf{A}^{[l]}$ 
  - POOL does not involve any model parameters
- $3\cdot$  Assume the availability of  $\mathrm{d}\mathbf{A}^{[l]}$  for the following analysis

- 1. For simplicity, let  $d_C^{[l]} = 1$ .
- 2. Assume  $dA^{[l]}$  to be available



$$\begin{aligned} \boldsymbol{W}^{[l]} &\in \mathbb{R}^{f^{[l]} \times f^{[l]} \times d^{[l-1]}_{\boldsymbol{C}}} & \boldsymbol{b}^{[l]} &\in \mathbb{R}^{1 \times 1 \times 1} & \boldsymbol{A}^{[l]} &\in \mathbb{R}^{1 \times 1} \\ & \mathrm{d} \boldsymbol{W}^{[l]} &= ? & \mathrm{d} \boldsymbol{b}^{[l]} &= \sum_{ij} \mathrm{d} \boldsymbol{Z}^{[l]}_{1,ij} \\ & \mathrm{d} \boldsymbol{Z}^{[l-1]} &= ? & \mathrm{d} \boldsymbol{Z}^{[l]}_{0} &= \mathrm{d} \boldsymbol{Z}^{[l]}_{1} & \mathrm{d} \boldsymbol{Z}^{[l]}_{1} &= \sigma^{[l]'}(\boldsymbol{Z}^{[l]}) \circ \mathrm{d} \boldsymbol{A}^{[l]} \end{aligned}$$

Wang, Z. (WISE & SOE, XMU)

4-2 Convolution Neural Network I

 $m{A}^{[l]} \in \mathbb{R}^{? \times ? \times 1}$ 

- 1. To find derivative with respect to something, we need to find where its information is contained
- 2. Initialize  $d\mathbf{Z}^{[l-1]}$  as a zero matrix of the same dimension as  $\mathbf{Z}^{[l-1]}$
- 3. Informally, obtain

$$\mathrm{d}\boldsymbol{Z}_{\mathrm{slice},ij}^{[l-1]} + = \mathrm{d}Z_{0,ij}^{[l]} \times \boldsymbol{W}^{[l]}$$

•  $\boldsymbol{Z}^{[l-1]}_{\mathrm{slice},ij}$ : the part of  $\boldsymbol{Z}^{[l-1]}$  used to obtain  $Z^{[l]}_{0,ij}$ 

- 1. It is obvious that every element in  $m{Z}_0^{[l]}$  contains information of  $m{W}^{[l]}$
- 2. Thus, we have

$$\mathrm{d}\boldsymbol{W}^{[l]} = \sum_{ij} \mathrm{d}Z_{0,ij}^{[l]} \times \boldsymbol{B}_{ij}^{[l-1]}$$

•  $\boldsymbol{B}_{ij}^{[l-1]}$ : the part of  $\boldsymbol{Z}^{[l-1]}$  used to obtain  $Z_{0,ij}^{[l]}$ 

28

1. Consider the general case where there exist  $d_C^{[l]}$  channels in the lth layer.



$$oldsymbol{Z}^{[l-1]} \in \mathbb{R}^{d_H^{[l-1]} imes d_W^{[l-1]} imes d_C^{[l-1]}}$$

$$oldsymbol{Z}_0^{[l]} \in \mathbb{R}^{? imes? imes d_C^{[l]}}$$

$$oldsymbol{Z}_1^{[l]} \in \mathbb{R}^{? imes? imes d_C^{[l]}}$$

$$oldsymbol{W}^{[l]} \in \mathbb{R}^{d_C^{[l]} imes f^{[l]} imes f^{[l]} imes d_C^{[l-1]}}$$

$$\mathrm{d}oldsymbol{W}^{[l]}=?$$

$$dZ^{[l-1]} = ?$$

$$m{b}^{[l]} \in \mathbb{R}^{d_C^{[l]} imes 1 imes 1 imes 1}$$

$$d\mathbf{b}_{c}^{[l]} = \sum_{ij} dZ_{1,ijc}^{[l]} \quad (c = 1, \dots, d_{C}^{[l]})$$

$$\mathrm{d} oldsymbol{Z}_0^{[l]} = \mathrm{d} oldsymbol{Z}_1^{[l]}$$

$$\mathrm{d} oldsymbol{Z}_1^{[l]} = \sigma^{[l]'}(oldsymbol{Z}^{[l]}) \circ \mathrm{d} oldsymbol{A}^{[l]}$$

Wang, Z. (WISE & SOE, XMU)

4-2 Convolution Neural Network I

30

 $oldsymbol{A}^{[l]} \in \mathbb{R}^{? imes ? imes d_C^{[l]}}$ 

- 1. Just think about where the information is contained when calculating derivatives.
- 2. The information about  $\boldsymbol{Z}^{[l-1]}$  is contained in every channel of  $\boldsymbol{Z}_0^{[l]}$
- 3. Initialize  $d\mathbf{Z}^{[l-1]}$  as a zero matrix of the same dimension as  $\mathbf{Z}^{[l-1]}$
- 4. Informally, obtain

$$d\mathbf{Z}_{\text{slice},ij}^{[l-1]} + = \sum_{c=1}^{d_C^{[l]}} dZ_{0,ijc}^{[l]} \times \mathbf{W}_c^{[l]}$$

- $\mathbf{Z}^{[l-1]}_{\mathrm{slice},ij}$ : the part of  $\mathbf{Z}^{[l-1]}$  used to obtain  $Z^{[l]}_{0,ijc}$  for  $c=1,\ldots,d^{[l]}_C$
- $W_c^{[l]}$ : the cth kernel in the lth layer

- 1. It is obvious that every element in  $m{Z}_{0,c}^{[l]}$  contains information of  $m{W}_c^{[l]}$  for  $c=1,\ldots,d_C^{[l]}$
- 2. Thus, we have

$$d\mathbf{W}_{c}^{[l]} = \sum_{ij} dZ_{0,ijc}^{[l]} \times \mathbf{B}_{ij}^{[l-1]} \quad (c = 1, \dots, d_{C}^{[l]})$$

•  $\boldsymbol{B}_{ij}^{[l-1]}$ : the part of  $\boldsymbol{Z}^{[l-1]}$  used to obtain  $Z_{0,ijc}^{[l]}$ 

### Data augmentation



[https://www.volansys.com/blog/data-augmentation-in-ml/]



Layer 1



[Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham]



[Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham



[Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham]



[Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham]



[Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham