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Introduction

1. Given an image, why not use a fully connected neural network?

® Number of parameters is overwhelmingly large, easily leading to overfitting
® Overlooks the spatial structure

® Not location (translation) invariant

2. Consider a new network, convolution neural network (CNN), for image processing
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Summary

L. Generally, d[(lj] increases as [ increases, but dgi], and dg decrease

2. The vectorization step does not involve any model parameter
3. Typically, there are three “layers” for CNN
® Convolution layers (CONV)

® Pooling layers (POOL)

® Fully connected layers (FC)



Notation

[: layer index
' dg}: height of the “image” of the [th layer

+ d\}: width of the “image” of the Ith layer

- f . kernel size associated with the [th layer

1.

2

3

4. d[g: number of channels of the [th layer
0

0. p[l]: padding associated with the [th layer
/

. s!!l; stride associated with the Ith layer



Vectorization

[i—1]  4ll—1]  S[l—1]
Lo A1) @ grxdy Vxdy PxdgT input for the Ith layer

[1] [1] :
AU R”Xd Xdy Xdc . lipear transformed result

Z[I] — A[I—l] “oy :?W[I] «“ _I_wb[l]
Al = ol Z10)

o

wll ¢ ]Rd x fx f1xdg; - kernels

[1]

plll € Ric X1x1IX1. hiag

S term

® “x7: convolution for each sample and each channel

® “4 7. one common bias for each channel

ol(.): activation function for the Ith layer



Vectorization

1. For simplicity, we show forward- and back-propagation for n =1

& [ — [ — [ —
All-1] ¢ pdi Uxdy UxdgH

& l [ i
Z[l] = Rdg xd%xdy

2. Forward propagation:
Z[” _ A[l—l] oy nW[l] “ 4 nb[l]
Alll — U[l}(z[l])



Convolution

1. Consider:



Convolution
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> > g
All-1 ¢ R gab Yl Z[[]i] _ Rdyxdyy xdd JAURE RA xdyy xdg}
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Pooling

1. Pooling is typically used after convolution layers,

® Reduce height and width for each channel

® Achieves robustness by neglecting useless or repeated information

® Increase the receptive field

® Achieve robustness small translations, rotations, and other distortions in the input

® Prevent overfitting, especially when combined with dropout



Pooling

1. Two types of pooling:
® Average pooling
® Max pooling

2. Notice

® Pooling is conducted for each channel

® Pooling does not involve new model parameters



Average pooling

1. Input size: 6 X 6

2. Kernel size: 2 x 2
3. Stride: 2



Average pooling

Kernel

(J.2¢

Input
3 D 4
1 9 6
3 9 6
5] 6 3
9 D 2
3 5 7

Result
195 | 6.0 | 6.25
30 | 6.0 | 2.25
395 | 3.75 | 3.0




Max pooling

1. Input size: 6 X 6

2. Kernel size: 2 x 2

3. Stride: 2



Max pooling

Kernel

Result
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Forward propagation
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Backpropagation
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Backpropagation

1. We have learnt backpropagation for fully connected layers
2. Thus, it remains to show the backpropagation for

® The pooling layer (POOL)

® The convolution layer (CONV)

3. In the following, we assume a POOL is conducted right atter a CONV



Backpropagation

1. Denote

® =]

Al ¢ R?X?xde " . gutput of the (I — 1)th CONV

ZI-1 ¢ R xdy xde™ L Gutput of the (I — 1)th POOL, taking A=Y as input
wlll ¢ Rd[g < Ul xdg ™ . kernel for the lth layer, taking ZU!'~! as input

pll € RecX1X1X1 . pias for the Ith layer, taking ZU!'=! as input

Al ¢ R?<7¥dd" . qutput of the Ith CONV

ZW ¢ R *dwxdc . gutput of the [th POOL



Structure

1. Assume that dZ" is available

POOL
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)29 | .20

AU
425 | 6.0 | 6.25
30 | 60 | 225
3.25 | 3.75 | 3.0




Backpropagation for average POOL

1. For average pooling, we have
dAl =dzlU e M
® A® B : Kronecker production of two matrices A and B



Backpropagation for Max POOL

All Kernel AU
9 6 5 4 8 9
1 T 9 6 8 0
7 9
D 0 9 6 2 0
5 9
5 2 6 3 7 0
9 7




Backpropagation for Max POOL

1. For Max pooling, dAY is obtained by

° stacking small matrices associated with each elements in Z Y times a 2 x 2

mask matrix

® Those 2 x 2 matrices consist of 0Os and only one 1

2. We have finished the backpropagation from dZ U to dAl

® POOL does not involve any model parameters

3+ Assume the availability of dAY for the following analysis



Backpropagation for CONV

L. For simplicity, let d[é] = I

2. Assume dAY to be available



Backpropagation for CONV
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Backpropagation for CONV

1. To find derivative with respect to something, we need to find where its information
is contained

2. TInitialize dZ"~ 1 as a zero matrix of the same dimension as Z!~1

3. Informally, obtain

AZ rasi+ =dZy x W

slice,

Z41 L the part of Z 1=1] used to obtain Z-

slice,27 * 0,27



Backpropagation for CONV

L. 1t is obvious that every element in Z([)l] contains information of Wl

2. Thus, we have
1] _ 1] [—1]
dwlll = Zdzw.j x B,
ij

BZ[;_H: the part of Z=1] y1sed to obtain Z([)lj]ij



Backpropagation for CONV

]

L. Consider the general case where there exist d channels in the [th layer.



Backpropagation for CONV
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Backpropagation for CONV

1. Just think about where the information is contained when calculating derivatives.

2. The information about Z!'~Y is contained in every channel of Z([}l]

3. Initialize dZ"~ 1 as a zero matrix of the same dimension as Z! 1

4. Informally, obtain
Y]
dZ[l_l] = ZdZ[gl}ijc X Wf“m
=1

slice,27

Z!=U . the part of Z=1 ysed to obtain ZY. . for ¢ = 1 sis s 7d[é]

slice,27 * 0,27¢

®* WlU: the cth kernel in the /th layer



Backpropagation for CONV

L. 1t is obvious that every element in Z{[)lj].,3 contains information of Wg”
for ¢ = L...,d[é]
2. Thus, we have
”—ZdZ e X Bl Y (c=1,...,d3)

B[l Y. the part of Z!'=1 used to obtain Z([} ]%jc



Data augmentation

Original Horizontal Flip Vertical Flip Horizontal + Vertical

A

Crop 2 Resize 1

[https:/ fwww . volansys.com/blog/data-angmentation-in-ml /|
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Understanding convolution networks

[Zeiler, M. Do, & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham)|
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Understanding convolution networks
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[Zeiler, M. D, & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham)|
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Understanding convolution networks

[Zeiler, M. ., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. $18-833). ¢

o

pringer, Cham)|

Wang, Z. (WISE & SOE, XMTU) -2 Convolution Neural Network 1

F oD ST

s

b



Understanding convolution networks
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[Zeiler. M. D, & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham)|
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Understanding convolution networks

[Zeiler, M. Do, & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham|
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